An Efficient Strategy Developed for Next-Generation Sequencing of Endosymbiont Genomes Performed Using Crude DNA Isolated from Host Tissues: A Case Study of Blattabacterium cuenoti Inhabiting the Fat Bodies of Cockroaches

نویسندگان

  • Yukihiro Kinjo
  • Seikoh Saitoh
  • Gaku Tokuda
چکیده

Whole-genome sequencing has emerged as one of the most effective means to elucidate the biological roles and molecular features of obligate intracellular symbionts (endosymbionts). However, the de novo assembly of an endosymbiont genome remains a challenge when host and/or mitochondrial DNA sequences are present in a dataset and hinder the assembly of the genome. By focusing on the traits of genome evolution in endosymbionts, we herein developed and investigated a genome-assembly strategy that consisted of two consecutive procedures: the selection of endosymbiont contigs from an output obtained from a de novo assembly performed using a TBLASTX search against a reference genome, named TBLASTX Contig Selection and Filtering (TCSF), and the iterative reassembling of the genome from reads mapped on the selected contigs, named Iterative Mapping and ReAssembling (IMRA), to merge the contigs. In order to validate this approach, we sequenced two strains of the cockroach endosymbiont Blattabacterium cuenoti and applied this strategy to the datasets. TCSF was determined to be highly accurate and sensitive in contig selection even when the genome of a distantly related free-living bacterium was used as a reference genome. Furthermore, the use of IMRA markedly improved sequence assemblies: the genomic sequence of an endosymbiont was almost completed from a dataset containing only 3% of the sequences of the endosymbiont's genome. The efficiency of our strategy may facilitate further studies on endosymbionts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome

Many insect species have established long-term symbiotic relationships with intracellular bacteria. Symbiosis with bacteria has provided insects with novel ecological capabilities, which have allowed them colonize previously unexplored niches. Despite its importance to the understanding of the emergence of biological complexity, the evolution of symbiotic relationships remains hitherto a myster...

متن کامل

Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola.

Phylogenetic relationships among termites, mantids and the five traditionally recognized cockroach families have been the subject of several studies during the last half-century. One cockroach lineage that has remained notably absent from such studies is the Nocticolidae. This group of small, elusive surface- and cave-dwelling species from the Old World Tropics has been proposed to represent an...

متن کامل

The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont.

Uric acid stored in the fat body of cockroaches is a nitrogen reservoir mobilized in times of scarcity. The discovery of urease in Blattabacterium cuenoti, the primary endosymbiont of cockroaches, suggests that the endosymbiont may participate in cockroach nitrogen economy. However, bacterial urease may only be one piece in the entire nitrogen recycling process from insect uric acid. Thus, in a...

متن کامل

Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach.

In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as ...

متن کامل

Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont.

Nitrogen acquisition and assimilation is a primary concern of insects feeding on diets largely composed of plant material. Reclaiming nitrogen from waste products provides a rich reserve for this limited resource, provided that recycling mechanisms are in place. Cockroaches, unlike most terrestrial insects, excrete waste nitrogen within their fat bodies as uric acids, postulated to be a supplem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2015